
Non-Linear Sequencing and Cognizant Failure
Erann Gat

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91 I09

gat@jpl.nasa.gov

Abstract. Spaced using linear sequences of time-based commands. Linear sequences work fairly
well, but they are difficult and expensive to generate, and are usually not capable of responding to
contingencies. Any anomalous behavior while executing a linear sequence generally results in the
spacecraft entering a safe mode. Critical sequences like orbit insertions which must be able to
respond to faults without going into safe mode are particularly difficult to design and verify. The
effort needed to generate command sequences can be reduced by extending the vocabulary of
sequences to include more sophisticated control constructs. The simplest extensions are
conditionals and loops. Adding these constructs would make a sequencing language look more or
less like a traditional programming language or scripting language, and would come with all the
difficulties associated with such a language. In particular, verifying the correctness of a sequence
would be tantamount to verifying the correctness of a program, which is undecidable in general.
We describe an extended vocabulary for non-linear sequencing based on the architectural notion of
cognizant failure. A cognizant failure architecture is divided into components whose contract is to
either achieve (or maintain) a certain condition, or report that they have failed to do so. Cognizant
failure is an easier condition to verify than correctness, but it can provide high confidence in the
safety of the spacecraft. Because cognizant failure inherently implies some kind of representation
of the intent of an action, the system can respond to contingencies in more robust and general
ways. We will describe an implemented non-linear sequencing system that is being flown on the
NASA New Millennium Deep Space 1 Mission as part of the Remote Agent Experiment.

INTRODUCTION
Spacecraft are traditionally controlled by linear sequences of open-loop commands. This command methodology has
a number of drawbacks. Sequences are time-consuming and expensive to generate, they require the ability to predict
the state of the spacecraft in detail, and they are brittle in the face of unexpected contingencies. These problems are
magnified when faced with the requirement for a critical sequence like an orbit insertion, where unexpected
contingencies cannot be allowed to simply send the spacecraft into a quiescent safe mode.

In this paper we describe a new approach to spacecraft sequencing which we call nonlinear or conditional sequencing.
Non-linear sequences are composed of closed-loop commands whose contract is to either achieve a certain condition
or report that they have failed to achieve it. This design constraint - that all commands report when they have failed
to achieve their intended effects - is known as cognizant failure, and it results in new, more complex execution
semantics for sequences. However, the complexity can be hidden behind a layer of abstraction (a language). The
resulting interface is a rich vocabulary for giving a spacecraft instructions that produce robust, intentional behavior.

mailto:gat@jpl.nasa.gov

LINEAR SEQUENCES

Nominal semantics

The execution semantics of traditional linear sequences are very simple. A command typically consists of an
execution time, a command code, and a set of parameters. The command code is an index into a table of subroutines
which are called by the spacecraft sequencer in response to sequence uplinks. The repertoire of subroutines in the
command table defines the command dictionary for the spacecraft.

Sequence execution nominally proceeds according to a very simple algorithm:

1. Wait for the time of the next command
2. Call the subroutine corresponding to the command code
3. Go to step 1

Note that the semantics of a sequence are order-independent, since every sequence step is tagged with an execution
time. A command sequence can therefore be modeled as an unordered set of (time, command) pairs. The
"sequentiality" of a sequence does not arise from its lexical structure, but from its execution semantics and the
monotonicity of time. Time is the "program counter" for a traditional spacecraft sequence.

The fact that traditional linear sequence execution is fundamentally driven by time has important consequences for
sequence analysis. For example, linear sequences are always guaranteed to terminate, which helps make sequence
analysis tractable. The difficulty of sequence analysis derives from the complex effects and interactions of the
individual commands, not from complications arising from the theory of computation.

Fault semantics

Unfortunately, this simple picture is significantly disturbed when anomalous behavior (usually caused by hardware
faults) is taken in to account. The spacecraft's normal response to anomalies is to abort the sequence, enter safe
mode, and listen for commands from Earth. But turning around a ground command is time consuming, which could
endanger the mission during critical sequences like orbit insertions. So for critical sequences the response to
anomalies is to attempt to repair the problem (typically using a hard-coded fault response) and then "rewind" or roll
back the sequence to an earlier point indicated by a mark.

The mark-and-rollback mechanism significantly complicates the generation and analysis of sequences because it
introduces into the execution semantics an internal program counter that does not progress monotonically as does
physical time. Sequence steps can no longer be tagged with absolute times. Instead, segments of the sequence that
can potentially be rolled back must be tagged with relative times (otherwise rollback would have no effect). The
semantics of a sequence are no longer independent of lexical order. The resulting sequence execution algorithm is
significantly more complicated:

START:
Set SEQUENCE-POINTER to the start of the sequence
Set TIME-BASE to the current time
Set MARK-POINTER to NIL

MAIN-LOOP:
IF the command at SEQUENCE-POINTER is a MARK command
THEN

ELSE
set MARK-POINTER equal to SEQUENCE-POINTER

IF the command at SEQUENCE-POINTER is an absolute time command whose time is in the past
THEN

increment SEQUENCE-POINTER
go to MAIN-LOOP

ELSE
Wait for the time T or TIME-BASE plus DELTA-T as appropriate
Call the subroutine corresponding to the command code

IF a fault occurred THEN
IF this is not a critical sequence
THEN

ELSE IF MARK-POINTER is not NIL
THEN

enter safe mode

set SEQUENCE-POINTER to MARK-POINTER
go to MAIN-LOOP

ELSE
enter safe mode

This algorithm is an order of magnitude more complicated than the simple non-fault case, and it is actually a
simplified version of reality. The actual implementation of this algorithm on the Galilleo spacecraft consists of
multiple parallel state machines interacting through global variables. There are also additional features that have
been left out of this pseudo-code, like limit counters on rollbacks to prevent infinite loops. The development and
analysis of critical sequences is similarly complicated, and comensurately expensive. Developing a critical sequence
can cost orders of magnitude more than a non-critical sequence.

Local recoveries

One way to address the problems of traditional linear sequences is to extend the envelope of behavior that is
considered nominal for a sequence command. For example, the sequence command repertoire for a spacecraft with
redundant devices typically includes a separate command to turn on and initialize each device. A hardware failure in a
particular device would cause the corresponding initialization command to fail. The probability of failure can be
reduced by adding a command whose effect is to initialize some device of a particular class without specifying the
particular device to be used. Such a command would be free to cycle through all the instances of the class until it
found one that was working properly. It might also try various strategies to recover from failures, like resetting a
device. This strategy is known as local recovery, and it is used extensively on the Cassini spacecraft (Hackney,
1993).

Local recoveries, however, do not change the fundamental semantics of sequence execution. Even commands with
local recoveries can fail, and when they do the spacecraft has to fall back on traditional safing mechanisms.

The traditional approach to fault management can be defended on the grounds that faults are rare. Unfortunately, the
cost of fault responses is associated largely with anticipating faults, not actually responding to them. So while local
recoveries can make individual commands more reliable and thus reduce the frequency of safing, it is not clear that it
alleviates the high costs associated with critical sequence development.

NONLINEAR SEQUENCING
Non-linear or conditional sequencing is an extension to traditional sequencing designed to reduce the cost of sequence
development by eliminating the distinction between critical and non-critical sequences. Non-linear sequencing is
based on an extended sequence semantics that combines fault and nominal command execution into a unified
framework. The result is a system that greatly simplifies the design and analysis of critical sequences while
retaining the capabilities of traditional sequences.

The central problem of linear sequences is that the knowledge employed in constructing them has all been "compiled
away" in the final sequence. The overall impact of an anomaly during sequence execution could range from a minor
glitch to a major disaster, but there is usually no way for the system to tell. For example, consider the following
two-step sequence:

At time X do command A
At time Y do command B

If something goes wrong during command A, there is no way for the system to know whether the problem has any
material impact on command B or not. It is entirely possible that the problem with A was minor enough that
command B could still be executed and have its originally intended effect. It is likewise possible that the failure of A
has left the system in a state where executing B would destroy the spacecraft. Because there is no information about

the intentions and interdependencies of commands in a sequence, any deviation from nominal behavior requires safing
and human intervention.

The solution to this problem is to extend the vocabulary of sequences to include annotations about the
interdependencies among steps. For example, one possible extension is to include meta-commands that say
something like, "The successful completion of step 1 is required for step 2." Another possibility is to add a
conditional control construct, an IF statement, so that one could write something like, "If step 1 completed
successfully, do command B," for step 2.

In designing extensions we must be careful to keep i n mind the original motivation for keeping the vocabulary of
traditional sequences impoverished: it is to make the analysis of sequences tractable. It does not take many
extensions to turn sequences into a full-blown Turing-complete programming language, which would make
sequences subject to the halting problem and thus impossible to analyze in general. The trick is to make sequences
more expressive while at the same time retaining the ability to predict their behavior.

However, to keep things in perspective we must also keep in mind current limitations on sequence analysis.
Sequence behavior is predictable with relative ease only in the case of non-critical sequences. Even in that case, the
only true guarantee that can be made is that the sequence will either produce a particular desired result or that the
spacecraft will enter safe mode, and even that is not an absolute guarantee, as demonstrated by Mars Observer. It is
never possible to make absolute guarantees about sequence behavior, even non-critical sequences, because of the
constant potential for non-deterministic hardware faults.

CONSTRUCTS
Our conditional sequencing infrastructure is based on a few simple foundational constructs. From these we can
construct a library of more advanced constructs, some of which are briefly described in section 5. The design is more
powerful than traditional linear sequences, but it is not Turing-complete since it does not include arbitrary loops.
Analyzing non-linear sequences does not imply solving the halting problem.

Primitives and cognizant failure: Ultimately, any sequencing system must issue primitive commands whose
operation is outside the scope of the sequencing system itself. Ideally, the design of the sequencing system should
place as few constraints on the structure of primitives as possible. In traditional linear sequences, the only
assumption about primitives is that they are subroutines that either achieve an intended effect, or invoke fault
protection (which can mean either going into safe mode or rolling back the sequence to the most recent mark).

For a nonlinear sequencing system we must modify this structure somewhat. Because the goal of nonlinear
sequencing is to enable more robust responses to contingencies we can no longer allow failed primitives to invoke
fault protection directly. Instead, primitives should simply report their status to the sequencer, which will now
assume responsibility for taking the appropriate actions. We will assume that primitives are designed so that they
exhibit cognizant failure, that is, they never fail to report when they have failed. We further assume that there is a
library procedure or macro called FAIL that is called by a primitive in order to signal a cognizant failure. FAIL
causes the primitive to terminate, either by returning or by throwing an exception (an implementation-dependent
design decision). FAIL is also allowed to accept an optional argument containing implementation-dependent
information about the failure.

Cognizant failure is the central feature of our design. It commits us to a strong dichotomy between a single nominal
course of action and multiple off-nominal courses of action. This design can be contrasted with similar systems
which support multiple courses of action without distinguishing between nominal and off-nominal cases (Firby,
1989; Lyons, 1993). Our formulation better reflects the structure of spacecraft operations, where deviations from the
nominal are problems far more often than they are opportunities.

Recovery procedures: Cognizant failure is only useful if the system can do something about failures when they
happen. A sequence segment designed to recover from a cognizant failure is called a recovery procedure. There is a
wide range of alternative designs for recovery procedures. In our implementation, recovery procedures are
dynamically scoped, and have a limited number of invocations before they "expire" and propagate a failure out to
their enclosing dynamic scope (if any). The outermost recovery procedure, the recovery of last resort, is to enter a
traditional safe mode.

The semantics of a primitive invocation in the presence of recovery procedures are:

CALL the primitive

IF the primitive terminated by calling FAIL then
IF there is a recovery procedure for this failure

AND the recovery procedure's invocation count is > 0
THEN
Decrement the recovery procedure's invocation count
CALL the recovery procedure

ELSE
FAIL

There are three significant features to note about these semantics:

1. The execution of a primitive in the nominal case is precisely the same in the linear and non-linear case. In both
cases, the system simply calls the primitive.

2. Primitive invocation is guaranteed to terminate if its constituents (primitive and recovery procedure) do.

3. In the presence of recovery procedures a primitive invocation will fail if and only if both the primitive and the
recovery procedure fail. Thus, the probability of primitive failure in the presence of recovery procedures, P(FPR), is:

P(FPR) = P(FP) * P(FR) <= P(FP) (1)

where P(FP) is the probability of the primitive failing and P(FR) is the probability of the recovery procedure failing.
Thus, the presence of a recovery procedure is guaranteed to only decrease the probability of failure, never to increase
it.

Recovery procedures themselves can terminate in one of three ways. 1) They can return, in which case their contract
is to have fulfilled the intention of their associated primitive. 2) They can restore the state of the spacecraft to one
where the associated primitive can be retried. In the latter case, the recovery procedure must be able to effect a non-
local transfer of control to its associated primitive. This is called a RETRY, and it is the non-linear equivalent of a
rollback. The difference is that in the linear case, rollback is automatic whenever a failure occurs in a critical
sequence. In the non-linear case, a rollback happens only when the recovery procedure specifically requests it. No
distinction is made between critical and non-critical cases. RETRY is the only looping mechanism in our
formulation. (In our implementation, ESL, there is actually a fourth way that a recovery can terminate: it can effect
a non-local transfer of control to the continuation of its dynamic scope. This is called an ABORT. The presence of
ABORT does not adversely impact the analyzability properties of non-linear sequences, but its utility is
questionable.)

The third way a recovery procedure can terminate is by failing. In this case, the failure is handled in exactly the same
way as a failure in the associated primitive. If a recovery procedure fails with the same failure as the associated
primitive and the recovery procedure's retry count is greater than zero then the result of the failure will be to run the
same recovery procedure again. The retry count is the mechanism that guards against infinite loops.

Notice that we have not made any commitment to how recovery procedures are created, how their dynamic scope is
established (we only require that a recovery procedure have a dynamic scope), or how failures and recovery procedures
are associated with one another. These are implementation-dependent design decisions.

Conditions: Conditions are predicates on the state of the system. Conditions can be queried to determined whether
they are true or false, and they can be checked for compatibility to see if i t is possible for two conditions to be
simultaneously true. Conditions are used for two purposes: to construct goal-directed commands out of primitives
that may not be goal-directed, and to construct higher-level synchronization constructs that prevent mutually
conflicting processes from running simultaneously.

Processes: Spacecraft control requires multiple parallel computational processes. In the past these processes have
been written so that time-sharing among processes is hard-wired into the process code itself. We expect future
spacecraft to have real operating systems, making manual time-slicing unnecessary. We will assume that any
computational process, including primitives, that can be called as a subroutine can also be spawned as a process. A
process has at least three states: running, successfully completed, and failed. (We will shortly add two more states:
waiting for events, and waiting for time.) We will assume that any primitive command spawned as a process can be
asynchronously aborted. We will specifically not assume that aborting a primitive necessarily leaves the spacecraft
in any kind of reasonable state. For example, aborting an attitude control primitive in the middle could leave a
thruster turned on, which if left uncorrected would result in the spacecraft rapidly spinning out of control.

Events: Whenever parallel processes are used, synchronization and interprocess communications (IPC) mechanisms
are required. We could choose a standard repertoire of process synchronization and IPC mechanisms (semaphore and
message queues, for example), but we choose instead to use a unified model called an event. An event is a construct
that combines synchronization and IPC functions into a single object. There are two operations on events: a process
can wait for an event, or a process can signal an event. When a process waits for an event that process blocks until
the event is signaled by some other process. The SIGNAL method accepts an argument, which is returned from the
WAIT call to any process waiting for the event. Thus, events can be used both for synchronization and for message
passing.

Events are non-queuing. If a producer process signals events faster than a consumer can wait for them then some
events will be lost. This places an upper bound on the amount of memory an event can consume. (The memory
consumed by an event is not necessarily constant, since it must maintain a list of pending tasks. However, the
number of tasks in the system is bounded, so the size of this list is bounded.)

Unwind-protect: Unwind-protect (Steele, 1990, also called stack unwinding or dynamic-wind) is a standard
mechanism for insuring that certain "cleanup" procedures are executed when a dynamic context is exited, even if that
exit is caused by a non-local transfer of control. We assume the reader's familiarity with this concept.

Conditionals: The final foundational construct in our formulation is a standard conditional (i.e. an IF statement).
Again, we assume the reader's familiarity with the concept.

Specifically excluded from our formulation is a WHILE loop, or any kind of branching that would be equivalent to a
while loop. This is the constraint that prevents non-linear sequencing from being a general-purpose programming
model, and thus subject to the halting problem.

,EXAMPLES
There are a host of derived constructs that can be built out of the foundational constructs described in the previous
section. In this section we briefly describe a few of the more common ones.

Linear sequencing: Traditional linear sequencing is subsumed by non-linear sequencing as follows. First, any
invocation of normal fault protection is replaced by a cognizant failure (i.e. an invocation of FAIL). For non-critical
sequences, the sequence is executed with a recovery procedure whose dynamic scope is the entire sequence. The
recovery procedure invokes local fault recovery followed by safing. For critical sequences, every MARK is replaced
by a recovery procedure whose dynamic scope is the part of the sequence between the current mark and the next one.
The recovery procedure invokes local fault recovery and does a RETRY.

Intentional constructs: ACHIEVE is a construct that combines a condition and the concept of cognizant failure
to produce a command whose purpose is manifest in the command. ACHIEVE takes a condition as an arguments.
Its semantics are:

IF the condition is true THEN

ELSE
return

perform an action to try to make the condition true
IF the condition is true THEN

ELSE
return

FAIL

The net effect is to guarantee that upon termination either the condition is true or the construct will fail. This is an
example of an intentional construct because the intent of the command, to make the condition true, is manifest in
the command itself.

Task nets: A task-net is a set of parallel processes, each of which has an associated event, and each running in a
lexical scope that allows access to those events. The task net also has a "master process" which monitors the
progress of the other tasks. Task nets can be used to build constructs like AND-PARALLEL, which runs a number
of processes in parallel until either they all finish successfully or one fails, OR-PARALLEL, which runs a number
of processes in parallel until either one terminates successfully or they all fail, and WITH-GUARDIAN, which runs
a pair of asymmetric processes, one of which performs a task while the other monitors a condition that the task
depends on.

Property locks: A property lock is a mechanism for synchronizing tasks so that they do not attempt to achieve
mutually exclusive conditions. Space does not permit a detailed description. For more information see (Gat, 1998).

All of these constructs are constructed from the foundational constructs described in section 4. For more examples
see (Gat 1997).

SUMMARY
We have described a computational framework for nonlinear sequencing, a methodology for commanding spacecraft
that extends the traditional linear sequencing paradigm with additional control constructs. The repertoire of control
constructs is designed to make complex sequences easier to write while retaining the ability to analyze sequences
without introducing the halting problem. Nonlinear sequencing can be particularly useful in the case of critical
sequences in the presence of faults, but it can also make non-critical sequences more reliable and easier to write.

An implementation and application of non-linear sequencing on an actual spacecraft is described in (Pell, 1996)

ACKNOWLEDGEMENTS
This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

REFERENCES
Gat, E., “ESL: A language for supporting robust plan execution in embedded autonomous agents,” in Proc. of IEEE

Aeronautics (AERO-98), Aspen, CO, IEEE Press, 1997.

Gat, E. and Pell, B., “Abstract Resource Management in an Unconstrained Plan Execution System,” in Proc. of IEEE
Aeronautics (AERO-98), Aspen, CO, IEEE Press, 1998.

Firby, R. J., “Adaptive Execution in Dynamic Domains,” Ph.D. thesis, Yale University Department of Computer
Science, 1989.

Hacknet, J., et al., “The Cassini Spacecraft: Object-Oriented Flight Control Software.“ Proceedings of the 16th
Annual AAS Guidance and Control Conference, Keystone, Colorado, 1993.

Lyons, D. “Representing and Analyzing action plans as networks of concurrent processes,“ IEEE Transactions on
Robotics and Automation, 9(3), June 1993.

Pell, B. et al., “A Remote Agent Prototype for Spacecraft Autonomy,” SPIE Proceedings Volume 2810, Denver,
CO, 1996.

Steele, G. L. Jr., Common Lisp, The Language, second edition. Digital Press, 1990.

